Soru
1-The A-4D Skyhawk has the following properties: S=28m^2,b=9m and bar (c)=3.54m If the aircraft is flying at M=0.4 at sea level (a=340m/s,rho =1.225kg/m^3) , and C_(m_(q))=-3.6 determine the pitching moment change resulting from a change in pitch rate of +10deg/s
Çözüm
4.2
(301 Oylar)
Leman
Elit · 8 yıl öğretmeni
Uzman doğrulaması
Cevap
To determine the pitching moment change resulting from a change in pitch rate, we can use the following formula:
\Delta M = \frac{1}{2} \cdot b \cdot \bar{c} \cdot \rho \cdot M^2 \cdot \Delta \dot{\alpha}
Where:-
is the change in pitching moment-
is the wing span-
is the mean chord length-
is the air density-
is the Mach number-
is the change in pitch rate (in radians per second)Given:-
-
-
-
-
Substituting the given values into the formula, we get:
\Delta M = \frac{1}{2} \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot (0.4)^2 \cdot \frac{\pi}{18} rad/s
Simplifying the expression, we get:
\Delta M = \frac{1}{2} \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.16 \cdot \frac{\pi}{18} rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.16 \cdot \frac{\pi}{18} rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.16 \cdot 0.1745 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\Delta M = 0.5 \cdot 9m \cdot 3.54m \cdot 1.225kg/m^3 \cdot 0.0277 rad/s
\