Soru
run 9^2(sqrt ((3.1.10^-5.10)/(K).1.3.10^-5))^2
Çözüm
4.2
(259 Oylar)
Hüsam
Profesyonel · 6 yıl öğretmeni
Uzman doğrulaması
Cevap
To solve the given expression, let's break it down step by step:1. Calculate the exponentiation inside the parentheses:
2. Simplify the fraction inside the square root: $\frac{3.1.10^{-5}.10}{K}.1.3.10^{-5} = \frac{3.10^{-4}}{K.3.10^{-5}} = \frac{3.10^{-4}}{3K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \