Anasayfa
/
Fizik
/
run 9^2(sqrt ((3.1.10^-5.10)/(k).1.3.10^-5))^2

Soru

run 9^2(sqrt ((3.1.10^-5.10)/(K).1.3.10^-5))^2

Çözüm

4.2 (259 Oylar)
Hüsam
Uzman doğrulaması
Profesyonel · 6 yıl öğretmeni

Cevap

To solve the given expression, let's break it down step by step:1. Calculate the exponentiation inside the parentheses: 2. Simplify the fraction inside the square root: $\frac{3.1.10^{-5}.10}{K}.1.3.10^{-5} = \frac{3.10^{-4}}{K.3.10^{-5}} = \frac{3.10^{-4}}{3K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \frac{10^{-4}}{K.10^{-5}} = \