Anasayfa
/
Matematik
/
(1) Log _(2)(3 X+1)=4 Ise A_(k)= ? (2) Log _(2)(8.2^x+1)=3 X Ise X= ? (3) Log _(3)(3.3^x-2)=2 X Ise X= ? (4) Log _(2)(x-2)<2

Soru

(1) log _(2)(3 x+1)=4 ise a_(k)= ? (2) log _(2)(8.2^x+1)=3 x ise x= ? (3) log _(3)(3.3^x-2)=2 x ise x= ? (4) log _(2)(x-2)<2 estisialifini saplayen en kue (5) log _(5)(x-3)<1 G K= ? (6) (a_(n))=(2 n-7) dizisinin ilk üa teriminin t (7) (a_(n))=(3 n+15) (8) a_(n+1)=a_(n)+3 ve a_(4)=2 ise a_(2)= ? (9) a_(n+1)=a_(n)-5 ve a_(8)=20 ise a_(4)= (10) a_(n+1)=a_(n)+2 ve a_(5)=15 ise a_(3) (11) (a_(n))=((4)/(3 n+2)) ise a_(2)+a_(5)= ? (12) (a_(n))=((3)/(2 n+1)) ise a_(1)+a_(2)= ? (13) sin 35 cdot cos 10+sin 10 cdot cos 35 cos 12 cdot cos 48-sin 12 cdot sin 48= (14) sin 10 cdot cos 80+cos 10 cdot sin 80 cos 15 cdot cos 45-sin 15 cdot cos 45 (15) sin alpha+cos alpha=(sqrt(3))/(2) ise sin 2 alpha= ? (16) sin alpha+cos alpha=(sqrt(2))/(2) ise sin 2 alpha= ?

Çözüm

4.7 (315 Oylar)
Tansu
Uzman doğrulaması
Usta · 5 yıl öğretmeni

Cevap

1. 2. 3. 4. 5. 6. 7. $\frac {sin35,cos40+sin10.cos35}{cos42\cdot cos48-sin12.sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos42\cdot cos48-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(42-48)\cdot cos(42+48)-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(-6)\cdot cos(90)-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(-6)\cdot 0-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35