Soru
Factorise using the difference between two squares: (x+2)^2-4 (x-3)^2-36 100-(x-11)^2 81-(x-8)^2 (x+7)^2-1 f 9-(x+4)^2 Answer the Opening Problem on page 208. 7 Factorise using the difference between two squares: (x+3)^2-(x-1)^2 (2x-1)^2-(x+1)^2 (1-3x)^2-(2x+1)^2
Çözüm
4
(226 Oylar)
Kezban
Kıdemli · 12 yıl öğretmeni
Uzman doğrulaması
Cevap
Let's factorize each expression using the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\).1. \((x+2)^{2} - 4\) Here,
and
.
2. \((x-3)^{2} - 36\) Here,
and
.
3. \(100 - (x-11)^{2}\) Here,
and
.
4. \(81 - (x-8)^{2}\) Here,
and
.
5. \((x+7)^{2} - 1\) Here,
and
.
6. \(9 - (x+4)^{2}\) Here,
and
.
7. \((x+3)^{2} - (x-1)^{2}\) Here,
and
.
8. \(({2} - (x+1)^{2}\) Here,
and
.
9. \((1-3x)^{2} - (2x+1)^{2}\) Here,
and
.
So, the factorized forms are:1. \((x+4)(x)\)2. \((x+3)(x-9)\)3. \((x-1)(19-x)\)4. \((x-1)(17-x)\)5. \((x+8)(x+6)\)6. \((x+7)(-x-1)\)7. \(2(x+1)(x+2)\)8. \(3x(x-2