Soru
11 f(x)=(4+x)/(x)(xneq 0) a Calculate f((1)/(2)) , simplifying your answer. b Solve f(x)=3
Çözüm
4.4
(305 Oylar)
Sadi
Usta · 5 yıl öğretmeni
Uzman doğrulaması
Cevap
a) To calculate
, we substitute
for
in the function
:
To simplify the expression, we can multiply the numerator and denominator by 2:$f(\frac{1}{2}) = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac