Anasayfa
/
Matematik
/
11 F(x)=(4+x)/(x)(xneq 0) a Calculate F((1)/(2)) , Simplifying Your Answer. B Solve F(x)=3

Soru

11 f(x)=(4+x)/(x)(xneq 0) a Calculate f((1)/(2)) , simplifying your answer. b Solve f(x)=3

Çözüm

4.4 (305 Oylar)
Sadi
Uzman doğrulaması
Usta · 5 yıl öğretmeni

Cevap

a) To calculate , we substitute for in the function : To simplify the expression, we can multiply the numerator and denominator by 2:$f(\frac{1}{2}) = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac