Soru
Ba anced this equation: Sb_(2)S_(3)+O_(2)... Sb+SO_(2) 3Sb_(2)S_(3)+3O_(2)... 2Sb+ SO_(2) Sb_(2)S_(3)+3O_(2)... 2Sb+ 3SO_(2) Sb_(2)S_(3)+O_(2)... 2Sb+ SO_(2) It is balanced.
Çözüm
4.6307 Voting
Tülin
Elit · 8 yıl öğretmeniUzman doğrulaması
Cevap
To balance the chemical equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation.<br /><br />Let's start with the first equation:<br />$Sb_{2}S_{3}+O_{2}\cdots Sb+SO_{2}$<br /><br />To balance this equation, we need to find the correct coefficients for each compound.<br /><br />First, let's balance the number of Sb atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+SO_{2}$<br /><br />Next, let's balance the number of S atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Finally, let's balance the number of O atoms:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Therefore, the balanced equation is:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Now let's check the other equations:<br /><br />For the second equation:<br />$3Sb_{2}S_{3}+3O_{2}\cdots 2Sb+$<br /><br />To balance this equation, we need to find the correct coefficients for each compound.<br /><br />First, let's balance the number of Sb atoms:<br />$3Sb_{2}S_{3}+3O_{2}\cdots 6Sb+$<br /><br />Next, let's balance the number of S atoms:<br />$3Sb_{2}S_{3}+3O_{2}\cdots 6Sb+3SO_{2}$<br /><br />Finally, let's balance the number of O atoms:<br />$3Sb_{2}S_{3}+3O_{2}\cdots 6Sb+3SO_{2}$<br /><br />Therefore, the balanced equation is:<br />$3Sb_{2}S_{3}+3O_{2}\cdots 6Sb+3SO_{2}$<br /><br />For the third equation:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+$<br /><br />To balance this equation, we need to find the correct coefficients for each compound.<br /><br />First, let's balance the number of Sb atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+SO_{2}$<br /><br />Next, let's balance the number of S atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Finally, let's balance the number of O atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Therefore, the balanced equation is:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />For the fourth equation:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+$<br /><br />To balance this equation, we need to find the correct coefficients for each compound.<br /><br />First, let's balance the number of Sb atoms:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Next, let's balance the number of S atoms:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Finally, let's balance the number of O atoms:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Therefore, the balanced equation is:<br />$Sb_{2}S_{3}+3O_{2}\cdots 2Sb+3SO_{2}$<br /><br />For the fifth equation:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+$<br /><br />To balance this equation, we need to find the correct coefficients for each compound.<br /><br />First, let's balance the number of Sb atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+SO_{2}$<br /><br />Next, let's balance the number of S atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Finally, let's balance the number of O atoms:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3SO_{2}$<br /><br />Therefore, the balanced equation is:<br />$Sb_{2}S_{3}+O_{2}\cdots 2Sb+3
Derecelendirmek için tıklayın: