Ana sayfa
/
Matematik
/
(x-y)/(x+y)=(1)/(2) ve (x)/(x+z)=(3)/(7) olduo uno aore stade sincne esit kastin?

Soru

(x-y)/(x+y)=(1)/(2)
ve
(x)/(x+z)=(3)/(7)
olduo uno aore
stade sincne esit
kastin?

(x-y)/(x+y)=(1)/(2) ve (x)/(x+z)=(3)/(7) olduo uno aore stade sincne esit kastin?

Çözüm

4.0283 Voting
avatar
Talip
Usta · 5 yıl öğretmeni
Uzman doğrulaması

Cevap

To solve the given equations, we can start by solving the first equation:<br /><br />$\-y}{x+y}=\frac{1}{2}$<br /><br />Multiplying both sides by $2(x+y)$, we get:<br /><br />$2(x-y) = (x+y)$<br /><br />Expanding and simplifying, we have:<br /><br />$2x - 2y = x + y$<br /><br />$2x - x = 3y$<br /><br />$x = 3y$<br /><br />Now, let's solve the second equation:<br /><br />$\frac{x}{x+z}=\frac{3}{7}$<br /><br />Cross-multiplying, we get:<br /><br />$7x = 3(x+z)$<br /><br />Expanding and simplifying, we have:<br /><br />$7x = 3x + 3z$<br /><br />$4x = 3z$<br /><br />$x = \frac{3z}{4}$<br /><br />Now, we can substitute the value of $x$ from the second equation into the first equation:<br /><br />$\frac{3z}{4} = 3y$<br /><br />Dividing both sides by 3, we get:<br /><br />$\frac{z}{4} = y$<br /><br />Therefore, the solution to the given equations is:<br /><br />$x = \frac{3z}{4}$<br />$y = \frac{z}{4}$
Derecelendirmek için tıklayın: