Soru
11 f(x)=(4+x)/(x)(xneq 0) a a Calculate f((1)/(2)) , simplifying your answer. b Solve f(x)=3
Çözüm
4.4243 Voting
Barış
Usta · 5 yıl öğretmeniUzman doğrulaması
Cevap
a) To calculate $f(\frac{1}{2})$, we substitute $x = \frac{1}{2}$ into the function $f(x)$:<br /><br />$f(\frac{1}{2}) = \frac{4 + \frac{1}{2}}{\frac{1}{2}}$<br /><br />To simplify the expression, we can multiply the numerator and denominator by 2:<br /><br />$f(\frac{1}{2}) = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{1}{2}}{\frac{1}{2}} = \frac{4 + \frac{
Derecelendirmek için tıklayın: