Soru
(1) log _(2)(3 x+1)=4 ise a_(k)= ? (2) log _(2)(8.2^x+1)=3 x ise x= ? (3) log _(3)(3.3^x-2)=2 x ise x= ? (4) log _(2)(x-2)<2 estisialifini saplayen en kue (5) log _(5)(x-3)<1 G K= ? (6) (a_(n))=(2 n-7) dizisinin ilk üa teriminin t (7) (a_(n))=(3 n+15) (8) a_(n+1)=a_(n)+3 ve a_(4)=2 ise a_(2)= ? (9) a_(n+1)=a_(n)-5 ve a_(8)=20 ise a_(4)= (10) a_(n+1)=a_(n)+2 ve a_(5)=15 ise a_(3) (11) (a_(n))=((4)/(3 n+2)) ise a_(2)+a_(5)= ? (12) (a_(n))=((3)/(2 n+1)) ise a_(1)+a_(2)= ? (13) sin 35 cdot cos 10+sin 10 cdot cos 35 cos 12 cdot cos 48-sin 12 cdot sin 48= (14) sin 10 cdot cos 80+cos 10 cdot sin 80 cos 15 cdot cos 45-sin 15 cdot cos 45 (15) sin alpha+cos alpha=(sqrt(3))/(2) ise sin 2 alpha= ? (16) sin alpha+cos alpha=(sqrt(2))/(2) ise sin 2 alpha= ?
Çözüm
4.7315 Voting
Tansu
Usta · 5 yıl öğretmeniUzman doğrulaması
Cevap
1. $log_{2}(3x+1)=4$<br />$3x+1=2^{4}$<br />$3x=15$<br />$x=5$<br /><br />2. $log_{2}(8.2^{x+1})=3x$<br />$8.2^{x+1}=2^{3x}$<br />$(8.2)^{x+1}=2^{3x}$<br />$x+1=\frac{3x}{\log_{8.2}2}$<br />$x=\frac{3x}{\log_{8.2}2}-1$<br />$x=\frac{3x}{\frac{1}{3}}-1$<br />$x=3x-3$<br />$2x=3$<br />$x=\frac{3}{2}$<br /><br />3. $log_{3}(3.3^{x-2})=2x$<br />$3.3^{x-2}=3^{2x}$<br />$(3.3)^{x-2}=3^{2x}$<br />$x-2=2x$<br />$x=2$<br /><br />4. $log_{2}(x-2)<2$<br />$x-2<4$<br />$x<6$<br /><br />5. $(a_{n})=(2n-9)$<br />$a_{n+1}=a_{n}-5$<br />$a_{8}=20$<br />$a_{4}=9$<br /><br />6. $(a_{n})=(\frac {4}{3n+2})$<br />$(an)=(\frac {3}{2n+1})$<br />$a_{1}+a_{2}=\frac{4}{5}+\frac{3}{5}=\frac{7}{5}$<br /><br />7. $\frac {sin35,cos40+sin10.cos35}{cos42\cdot cos48-sin12.sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos42\cdot cos48-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(42-48)\cdot cos(42+48)-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(-6)\cdot cos(90)-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{cos(-6)\cdot 0-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35}{-sin12\cdot sin48}=\frac{sin35\cdot cos40+sin10\cdot cos35
Derecelendirmek için tıklayın: