Ana sayfa
/
Matematik
/
3^2=5 oldisguna gore, 9^m+3^n+2 topiami kayur? A) 70 B) 65 C) 60 D) 55 E) 50

Soru

3^2=5
oldisguna gore,
9^m+3^n+2 topiami kayur?
A) 70
B) 65
C) 60
D) 55
E) 50

3^2=5 oldisguna gore, 9^m+3^n+2 topiami kayur? A) 70 B) 65 C) 60 D) 55 E) 50

Çözüm

4.3211 Voting
avatar
Leyla
Elit · 8 yıl öğretmeni
Uzman doğrulaması

Cevap

To solve the expression \(9^m + 3^{n+2}\), we need to find the values of \(m\) and \(n\) that satisfy the equation \(3^2 = 5\).<br /><br />First, let's rewrite \(9\) as \(3^2\):<br />\[9^m = (3^2)^m = 3^{2m}\]<br /><br />Now, the expression becomes:<br />\[3^{2m} + 3^{n+2}\]<br /><br />Since \(3^2 = 5\), we can substitute \(3^2\) with \(5\):<br />\[3^{2m} = 5^m\]<br />\[3^{n+2} = 3^n \cdot 3^2 = 3^n \cdot 5\]<br /><br />So, the expression becomes:<br />\[5^m + 3^n \cdot 5\]<br /><br />Now, we need to find the values of \(m\) and \(n\) that satisfy the equation \(3^2 = 5\). Since \(3^2 = 9\), we can rewrite the equation as:<br />\[9 = 5\]<br /><br />This equation is not possible, as \(9\) is not equal to \(5\). Therefore, there is no solution for \(m\) and \(n\) that satisfies the equation \(3^2 = 5\).<br /><br />Hence, the correct answer is:<br />E) 50
Derecelendirmek için tıklayın: