Ana sayfa
/
Matematik
/
6) A(2,-3) ve B(5,6) noktalarindan gesen doğrunun denklemini bulunuz?

Soru

6)
A(2,-3) ve B(5,6) noktalarindan gesen
doğrunun denklemini bulunuz?

6) A(2,-3) ve B(5,6) noktalarindan gesen doğrunun denklemini bulunuz?

Çözüm

4.7312 Voting
avatar
Umay
Kıdemli · 12 yıl öğretmeni
Uzman doğrulaması

Cevap

Verilen noktalar $A(2,-3)$ ve $B(5,6)$'dır. Doğrunun denklemini bulmak için önce eğimi bulmamız gerekiyor.<br /><br />Eğim formülü:<br />\[ m = \frac{y_2 - y_1}{x_2 - x_1} \]<br /><br />Burada $A(x_1, y_1) = (2, -3)$ ve $B(x_2, y_2) = (5, 6)$ olduğundan:<br /><br />\[ m = \frac{6 - (-3)}{5 - 2} = \frac{6 + 3}{5 - 2} = \frac{9}{3} = 3 \]<br /><br />Şimdi eğimi ve bir nokta (örneğin $A$ noktası) kullanarak doğrunun denklemini bulalım. Doğrunun denklemi şu formül ile yazılır:<br /><br />\[ y - y_1 = m(x - x_1) \]<br /><br />Burada $m = 3$, $x_1 = 2$ ve $y_1 = -3$ olduğundan:<br /><br />\[ y - (-3) = 3(x - 2) \]<br /><br />Bu denklemi açalım:<br /><br />\[ y + 3 = 3x - 6 \]<br /><br />Son olarak, denklemi standart formda yazalım:<br /><br />\[ y = 3x - 9 \]<br /><br />Dolayısıyla, $A(2,-3)$ ve $B(5,6)$ noktalarından geçen doğrunun denklemi:<br /><br />\[ y = 3x - 9 \]
Derecelendirmek için tıklayın: