Ana sayfa
/
Matematik
/
a.brec birer rasyonel say olmak Gzere 2cdot a+bcdot sqrt (3)-c=3cdot ccdot sqrt (3) olduguna gore, (a+c)/(b) orani asagidakilerden hanginine esittir? A) -(3)/(2) -(2)/(3) (1)/(6)

Soru

a.brec birer rasyonel say olmak Gzere
2cdot a+bcdot sqrt (3)-c=3cdot ccdot sqrt (3)
olduguna gore, (a+c)/(b) orani asagidakilerden hanginine
esittir?
A) -(3)/(2)
-(2)/(3)
(1)/(6)

a.brec birer rasyonel say olmak Gzere 2cdot a+bcdot sqrt (3)-c=3cdot ccdot sqrt (3) olduguna gore, (a+c)/(b) orani asagidakilerden hanginine esittir? A) -(3)/(2) -(2)/(3) (1)/(6)

Çözüm

4.0223 Voting
avatar
Cemil
Uzman · 3 yıl öğretmeni
Uzman doğrulaması

Cevap

Verilen denklemi çözelim:<br /><br />$2\cdot a + b\cdot \sqrt{3} - c = 3\cdot c\cdot \sqrt{3}$<br /><br />Bu denklemden $c$'yi çözelim:<br /><br />$2\cdot a + b\cdot \sqrt{3} = 3\cdot c\cdot \sqrt{3} + c$<br /><br />$2\cdot a + b\cdot \sqrt{3} = c(3\cdot \sqrt{3} + 1)$<br /><br />$c = \frac{2\cdot a + b\cdot \sqrt{3}}{3\cdot \sqrt{3} + 1}$<br /><br />Şimdi $\frac{a+c}{b}$ ifadesini çözelim:<br /><br />$\frac{a+c}{b} = \frac{a + \frac{2\cdot a + b\cdot \sqrt{3}}{3\cdot \sqrt{3} + 1}}{b}$<br /><br />$\frac{a+c}{b} = \frac{a(1 + \frac{2}{3\cdot \sqrt{3} + 1}) + \frac{b\cdot \sqrt{3}}{3\cdot \sqrt{3} + 1}}{b}$<br /><br />$\frac{a+c}{b} = \frac{a(3\cdot \sqrt{3} + 1) + b\cdot \sqrt{3}}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = \frac{3\cdot a\cdot \sqrt{3} + a + b\cdot \sqrt{3}}{3\cdot b\cdot \sqrt{3} + b}$<br /><br />$\frac{a+c}{b} = \frac{3\cdot (a + b)\cdot \sqrt{3} + a}{3\cdot b\cdot \sqrt{3} + b}$<br /><br />$\frac{a+c}{b} = \frac{3\cdot (a + b)\cdot \sqrt{3}}{3\cdot b\cdot \sqrt{3}} + \frac{a}{3\cdot b\cdot \sqrt{3} + b}$<br /><br />$\frac{a+c}{b} = \frac{a + b}{b} + \frac{a}{3\cdot b\cdot \sqrt{3} + b}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{3\cdot b\cdot \sqrt{3} + b}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3} + 1)}$<br /><br />$\frac{a+c}{b} = 1 + \frac{a}{b(3\cdot \sqrt{3
Derecelendirmek için tıklayın: