Soru
4. If the formula of sigma =500varepsilon ^0.5 exists between the true stress and true strain for a steel. Obtain amount of elastic strain at a strain equivalent to 0.25 ? (E=200GPa) 5.During a tensile test on a specimen of 1cm^2 cross-section,maximum load of 80 kN and area of cross-section at neck was 0.5cm^2 Calculate ultimate tensile strength UTS) of specimen.
Çözüm
4
(263 Oylar)
Kemal
Elit · 8 yıl öğretmeni
Uzman doğrulaması
Cevap
4. To find the elastic strain at a strain equivalent to 0.25, we can use the given formula
. We need to rearrange the formula to solve for
.Given:
\varepsilon
\varepsilon ^{0.5} = \frac{\sigma}{500}
\sigma
\varepsilon ^{0.5} = \frac{E \cdot \varepsilon}{500}
\varepsilon ^{0.5} = \frac{E \cdot \varepsilon}{500}
E
\varepsilon ^{0.5} = \frac{\varepsilon}{500/E}
\varepsilon = \left(\frac{\varepsilon}{500/E}\right)^2
\varepsilon = \frac{\varepsilon^2}{500^2/E^2}
E^2
E^2 \cdot \varepsilon = \frac{\varepsilon^2}{500^2}
\varepsilon
E \cdot \varepsilon = \frac{\varepsilon}{500^2}
E \cdot \varepsilon = \frac{\varepsilon}{250000}
E
\varepsilon = \frac{\varepsilon}{250000E}
\varepsilon = \frac{1}{250000}
\frac{1}{250000}
UTS = \frac{Force}{Area}
UTS = \frac{80000}{0.5 \times 10^{-4}}
UTS = 80000 \times 10^4
UTS = 800000000$Therefore, the ultimate tensile strength (UTS) of the specimen is 800 MPa.