Anasayfa
/
Mühendislik
/
4. if the formula of sigma =500varepsilon ^0.5 exists between the true stress and true strain for a steel. obtain amount of elastic

Soru

4. If the formula of sigma =500varepsilon ^0.5 exists between the true stress and true strain for a steel. Obtain amount of elastic strain at a strain equivalent to 0.25 ? (E=200GPa) 5.During a tensile test on a specimen of 1cm^2 cross-section,maximum load of 80 kN and area of cross-section at neck was 0.5cm^2 Calculate ultimate tensile strength UTS) of specimen.

Çözüm

4 (263 Oylar)
Kemal
Uzman doğrulaması
Elit · 8 yıl öğretmeni

Cevap

4. To find the elastic strain at a strain equivalent to 0.25, we can use the given formula . We need to rearrange the formula to solve for .Given: \varepsilon \varepsilon ^{0.5} = \frac{\sigma}{500} \sigma \varepsilon ^{0.5} = \frac{E \cdot \varepsilon}{500} \varepsilon ^{0.5} = \frac{E \cdot \varepsilon}{500} E \varepsilon ^{0.5} = \frac{\varepsilon}{500/E} \varepsilon = \left(\frac{\varepsilon}{500/E}\right)^2 \varepsilon = \frac{\varepsilon^2}{500^2/E^2} E^2 E^2 \cdot \varepsilon = \frac{\varepsilon^2}{500^2} \varepsilon E \cdot \varepsilon = \frac{\varepsilon}{500^2} E \cdot \varepsilon = \frac{\varepsilon}{250000} E \varepsilon = \frac{\varepsilon}{250000E} \varepsilon = \frac{1}{250000} \frac{1}{250000} UTS = \frac{Force}{Area} UTS = \frac{80000}{0.5 \times 10^{-4}} UTS = 80000 \times 10^4 UTS = 800000000$Therefore, the ultimate tensile strength (UTS) of the specimen is 800 MPa.