Soru
In the combustion chamber of an engine the initial volume is 450cm^3 at a pressure of 1.0 atmosphere. If the piston displaces 402cm^3 of the total, what is the resulting pressure in the combustion chamber? (Assume negligible temperature change.) Hint: Calculate the new volume by subtracting the amount of space the piston takes up from the initial volume. square atm
Çözüm
4.3208 Voting
Tülin
Usta · 5 yıl öğretmeniUzman doğrulaması
Cevap
To solve this problem, we can use Boyle's Law, which states that for a given mass of gas at constant temperature, the pressure and volume are inversely proportional. Mathematically, Boyle's Law is expressed as:<br /><br />\[ P_1 V_1 = P_2 V_2 \]<br /><br />where:<br />- \( P_1 \) is the initial pressure,<br />- \( V_1 \) is the initial volume,<br />- \( P_2 \) is the final pressure,<br />- \( V_2 \) is the final volume.<br /><br />Given:<br />- Initial volume, \( V_1 = 450 \, \text{cm}^3 \)<br />- Initial pressure, \( P_1 = 1.0 \, \text{atm} \)<br />- Volume displaced by the piston, \( V_{\text{displaced}} = 402 \, \text{cm}^3 \)<br /><br />First, calculate the new volume \( V_2 \):<br /><br />\[ V_2 = V_1 - V_{\text{displaced}} \]<br />\[ V_2 = 450 \, \text{cm}^3 - 402 \, \text{cm}^3 \]<br />\[ V_2 = 48 \, \text{cm}^3 \]<br /><br />Now, apply Boyle's Law to find the resulting pressure \( P_2 \):<br /><br />\[ P_1 V_1 = P_2 V_2 \]<br />\[ (1.0 \, \text{atm}) \times (450 \, \text{cm}^3) = P_2 \times (48 \, \text{cm}^3) \]<br /><br />Solve for \( P_2 \):<br /><br />\[ P_2 = \frac{(1.0 \, \text{atm}) \times (450 \, \text{cm}^3)}{48 \, \text{cm}^3} \]<br />\[ P_2 = \frac{450}{48} \, \text{atm} \]<br />\[ P_2 \approx 9.375 \, \text{atm} \]<br /><br />Therefore, the resulting pressure in the combustion chamber is approximately \( 9.375 \, \text{atm} \).
Derecelendirmek için tıklayın: