Soru
The volume of a gas is 605 liters at 27.0^circ C The new temperature is -3.0^circ C What is the new volume? (Remember to convert temperatures to the Kelvin scale.) square
Çözüm
4.7287 Voting
Gürbüz
Profesyonel · 6 yıl öğretmeniUzman doğrulaması
Cevap
To find the new volume of the gas when the temperature changes, we can use Charles's Law. Charles's Law states that the volume of a gas is directly proportional to its temperature in Kelvin, provided the pressure and the amount of gas remain constant. The formula for Charles's Law is:<br /><br />\[<br />\frac{V_1}{T_1} = \frac{V_2}{T_2}<br />\]<br /><br />where:<br />- \( V_1 \) is the initial volume,<br />- \( T_1 \) is the initial temperature in Kelvin,<br />- \( V_2 \) is the final volume,<br />- \( T_2 \) is the final temperature in Kelvin.<br /><br />First, convert the temperatures from Celsius to Kelvin:<br /><br />\[<br />T_1 = 27.0^{\circ}C + 273.15 = 300.15 \, K<br />\]<br /><br />\[<br />T_2 = -3.0^{\circ}C + 273.15 = 270.15 \, K<br />\]<br /><br />Now, plug the values into Charles's Law equation:<br /><br />\[<br />\frac{605 \, \text{L}}{300.15 \, \text{K}} = \frac{V_2}{270.15 \, \text{K}}<br />\]<br /><br />Solve for \( V_2 \):<br /><br />\[<br />V_2 = \frac{605 \, \text{L} \times 270.15 \, \text{K}}{300.15 \, \text{K}}<br />\]<br /><br />\[<br />V_2 \approx \frac{163470.75 \, \text{L} \cdot \text{K}}{300.15 \, \text{K}}<br />\]<br /><br />\[<br />V_2 \approx 544.7 \, \text{L}<br />\]<br /><br />Therefore, the new volume of the gas at \(-3.0^{\circ}C\) is approximately \(544.7\) liters.
Derecelendirmek için tıklayın: