Soru
5b. The pilot of a 60,500 kg jet plane is flying in circles whose radius is 5.00times 10^4m takes 1.8times 10^3 s to make one rotation. How much centripetal force would there be?
Çözüm
4.3161 Voting
Kerime
Elit · 8 yıl öğretmeniUzman doğrulaması
Cevap
To calculate the centripetal force acting on the jet plane, we can use the formula:<br /><br />\[ F_c = \frac{mv^2}{r} \]<br /><br />where:<br />- \( F_c \) is the centripetal force,<br />- \( m \) is the mass of the jet plane,<br />- \( v \) is the velocity of the jet plane,<br />- \( r \) is the radius of the circular path.<br /><br />First, we need to find the velocity \( v \) of the jet plane. The velocity can be calculated using the formula:<br /><br />\[ v = \frac{2\pi r}{T} \]<br /><br />where:<br />- \( T \) is the time taken to make one rotation.<br /><br />Given:<br />- \( r = 5.00 \times 10^4 \, \text{m} \)<br />- \( T = 1.8 \times 10^3 \, \text{s} \)<br /><br />Now, plug in the values:<br /><br />\[ v = \frac{2\pi \times 5.00 \times 10^4 \, \text{m}}{1.8 \times 10^3 \, \text{s}} \]<br /><br />\[ v = \frac{10\pi \times 10^4 \, \text{m}}{1.8 \times 10^3 \, \text{s}} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8 \times 10^3} \, \text{m/s} \]<br /><br />\[ v = \frac{10\pi \times 10^4}{1.8
Derecelendirmek için tıklayın: