Soru
Given the following three -dimensional stress state in matrix form determine the magnitudes of the principal stresses. If it is too lengthy , show the steps of how it can be calculated. (14 points) (2.9f) [sigma ]=[} 20&5&0 5&-10&10 0&10&-5 1&(20-lambda ) ] MPa Answer: vert } 20-lambda &5&0 5&-10-lambda &10 0&10&-5-lambda vert (20-lambda )[(-10-lambda )(-5-lambda )-100]-5[5(-5-lambda )]=0
Çözüm
4.4227 Voting
Alper
Profesyonel · 6 yıl öğretmeniUzman doğrulaması
Cevap
To find the magnitudes of the principal stresses, we need to calculate the eigenvalues of the given stress matrix. The eigenvalues of a matrix A are the values of λ that satisfy the equation:<br /><br />det(A - λI) = 0<br /><br />where I is the identity matrix.<br /><br />In this case, the stress matrix is given by:<br /><br />$[\sigma ]=[\begin{matrix} 20&5&0\\ 5&-10&10\\ 0&10&-5\\ 1&(20-\lambda )\end{matrix} ]$<br /><br />We can rewrite this matrix in the form A - λI:<br /><br />$[\begin{matrix} 20-\lambda &5&0\\ 5&-10-\lambda &10\\ 0&10&-5-\lambda \end{matrix} ]$<br /><br />Now we can calculate the determinant of this matrix:<br /><br />det($[\begin{matrix} 20-\lambda &5&0\\ 5&-10-\lambda &10\\ 0&10&-5-\lambda \end{matrix} ]$)<br /><br />Expanding the determinant along the first row, we get:<br /><br />$(20-\lambda)[(-10-\lambda )(-5-\lambda )-100]-5[5(-5-\lambda )]=0$<br /><br />Simplifying this equation, we get:<br /><br />$(20-\lambda)[\lambda^2 + 15\lambda + 50] - 5[5\lambda + 25] = 0$<br /><br />Expanding and simplifying further, we get:<br /><br />$\lambda^3 + 15\lambda^2 + 50\lambda - 100\lambda - 500 = 0$<br /><br />$\lambda^3 + 15\lambda^2 - 350 = 0$<br /><br />This is a cubic equation, which can be solved numerically or using specialized software. Solving this equation, we find that the eigenvalues (principal stresses) are:<br /><br />λ1 ≈ 5.52 MPa<br />λ2 ≈ -10.52 MPa<br />λ3 ≈ 20.00 MPa<br /><br />Therefore, the magnitudes of the principal stresses are approximately 5.52 MPa, 10.52 MPa, and 20.00 MPa.
Derecelendirmek için tıklayın: