Soru
Question 3 (10+10=20 Points): An airfoil with a chord length of 1.5 m is in a flow with V_(ast )=50m/s and rho =1.2kg/m^3 The airfoil is cambered and has a zero-lift angle of attack of a_(t-0)=-1^ast (a) Calculate the lift coefficient at alpha =5^circ (b) Determine the total lift force per unit span acting on the airfoil.
Çözüm
3.0243 Voting
Baran
Kıdemli · 11 yıl öğretmeniUzman doğrulaması
Cevap
(a) To calculate the lift coefficient at $\alpha = 5^{\circ}$, we can use the lift coefficient equation for a cambered airfoil:<br /><br />$C_L = \frac{\pi}{4} \cdot \alpha \cdot \sqrt{1 - \frac{\alpha^2}{2}}$<br /><br />where $C_L$ is the lift coefficient, $\alpha$ is the angle of attack in radians.<br /><br />First, we need to convert the angle of attack from degrees to radians:<br /><br />$\alpha = 5^{\circ} \cdot \frac{\pi}{180} = \frac{5\pi}{180} \text{ radians}$<br /><br />Now, we can substitute the value of $\alpha$ into the lift coefficient equation:<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{(\frac{5\pi}{180})^2}{2}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{1 - \frac{25\pi^2}{64800}}$<br /><br />$C_L = \frac{\pi}{4} \cdot \frac{5\pi}{180} \cdot \sqrt{
Derecelendirmek için tıklayın: