Soru
6.4 A cylindrica specimen of a titantum alloy having an elastic modulus of 107 GPa (15.5times 10^6psi) and an original diameter of 3.8 mm (0.15 in.)will experience only elastic deformation when a tensile load of 2000 N (450 Iby) is applied.Compute the maximum length of the specimen before deformation if the maximum allowable clongation is 0.42 min (0.0165 in).
Çözüm
4.6323 Voting
Deniz
Elit · 8 yıl öğretmeniUzman doğrulaması
Cevap
To solve this problem, we need to use the formula for elastic deformation:<br /><br />\[ \epsilon = \frac{\sigma}{E} \]<br /><br />where:<br />- \(\epsilon\) is the strain (deformation),<br />- \(\sigma\) is the stress,<br />- \(E\) is the elastic modulus.<br /><br />Given:<br />- Elastic modulus, \(E = 107 \text{ GPa} = 15.5 \times 10^6 \text{ psi}\)<br />- Original diameter, \(d = 3.8 \text{ mm} = 0.15 \text{ in.}\)<br />- Tensile load, \(F = 2000 \text{ N} = 450 \text{ lbf}\)<br />- Maximum allowable elongation, \(\Delta L = 0.42 \text{ mm} = 0.0165 \text{ m}\)<br /><br />First, we need to calculate the original cross-sectional area \(A\) of the specimen:<br /><br />\[ A = \frac{\pi d^2}{4} \]<br /><br />Substituting \(d = 3.8 \text{ mm}\):<br /><br />\[ A = \frac{\pi (3.8 \text{ mm})^2}{4} = \frac{\pi \times 14.44 \text{ mm}^2}{4} = 11.36 \text{ mm}^2 \]<br /><br />Next, we calculate the maximum allowable stress \(\sigma_{\text{max}}\):<br /><br />\[ \sigma_{\text{max}} = \frac{F}{A} \]<br /><br />Substituting \(F = 2000 \text{ N}\) and \(A = 11.36 \text{ mm}^2\):<br /><br />\[ \sigma_{\text{max}} = \frac{2000 \text{ N}}{11.36 \text{ mm}^2} = 175.88 \text{ MPa} \]<br /><br />Now, we can find the maximum allowable strain \(\epsilon_{\text{max}}\):<br /><br />\[ \epsilon_{\text{max}} = \frac{\sigma_{\text{max}}}{E} \]<br /><br />Substituting \(\sigma_{\text{max}} = 175.88 \text{ MPa}\) and \(E = 107 \text{ GPa}\):<br /><br />\[ \epsilon_{\text{max}} = \frac{175.88 \text{ MPa}}{107 \text{ GPa}} = 0.00164 \]<br /><br />Finally, we can find the maximum length \(L_{\text{max}}\) before deformation:<br /><br />\[ \Delta L = \epsilon_{\text{max}} \times L_{\text{max}} \]<br /><br />Solving for \(L_{\text{max}}\):<br /><br />\[ L_{\text{max}} = \frac{\Delta L}{\epsilon_{\text{max}}} \]<br /><br />Substituting \(\Delta L = 0.42 \text{ mm}\) and \(\epsilon_{\text{max}} = 0.00164\):<br /><br />\[ L_{\text{max}} = \frac{0.42 \text{ mm}}{0.00164} = 256.10 \text{ mm} \]<br /><br />Therefore, the maximum length of the specimen before deformation is approximately 256.10 mm.
Derecelendirmek için tıklayın: