Ana sayfa
/
Fizik
/
If 21 mL of gas are subjected to a temperature change from 10.0^circ C to 120^circ C and a pressure change from 1.0 atm to 15 atm, the new volume is: (Be sure to use the correct number of significant figures.) 440 mL 1.0 mL 0.53 mL 1.9 mL

Soru

If 21 mL of gas are subjected to a temperature change from 10.0^circ C to 120^circ C and a pressure change from
1.0 atm to 15 atm, the new volume is: (Be sure to use the correct number of significant figures.)
440 mL
1.0 mL
0.53 mL
1.9 mL

If 21 mL of gas are subjected to a temperature change from 10.0^circ C to 120^circ C and a pressure change from 1.0 atm to 15 atm, the new volume is: (Be sure to use the correct number of significant figures.) 440 mL 1.0 mL 0.53 mL 1.9 mL

Çözüm

4.6402 Voting
avatar
Harun
Gelişmiş · 1 yıl öğretmeni
Uzman doğrulaması

Cevap

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas:<br /><br />\[<br />\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}<br />\]<br /><br />where:<br />- \( P_1 \) and \( P_2 \) are the initial and final pressures,<br />- \( V_1 \) and \( V_2 \) are the initial and final volumes,<br />- \( T_1 \) and \( T_2 \) are the initial and final temperatures in Kelvin.<br /><br />First, convert the temperatures from Celsius to Kelvin:<br />\[<br />T_1 = 10.0^\circ C + 273.15 = 283.15 \, K<br />\]<br />\[<br />T_2 = 120^\circ C + 273.15 = 393.15 \, K<br />\]<br /><br />Now, plug in the known values into the combined gas law equation:<br />\[<br />\frac{1.0 \, \text{atm} \times 21 \, \text{mL}}{283.15 \, \text{K}} = \frac{15 \, \text{atm} \times V_2}{393.15 \, \text{K}}<br />\]<br /><br />Solve for \( V_2 \):<br />\[<br />V_2 = \frac{1.0 \, \text{atm} \times 21 \, \text{mL} \times 393.15 \, \text{K}}{15 \, \text{atm} \times 283.15 \, \text{K}}<br />\]<br /><br />Calculate \( V_2 \):<br />\[<br />V_2 = \frac{21 \times 393.15}{15 \times 283.15}<br />\]<br /><br />\[<br />V_2 = \frac{8256.15}{4247.25} \approx 1.944 \, \text{mL}<br />\]<br /><br />Considering significant figures, the initial volume (21 mL) has two significant figures, so the final answer should also have two significant figures:<br /><br />\( V_2 \approx 1.9 \, \text{mL} \)<br /><br />Therefore, the new volume is approximately 1.9 mL.
Derecelendirmek için tıklayın: