Ana sayfa
/
Mühendislik
/
A ramjet engine operates at a flight Mach number M_(0)=0.8 at 9000 m altitude where p_(0)=30.14 kPa and T_(0)=229K For an effective exhaust velocity V_(e)=760m/s and inlet cross -sectional area A_(1)=0.187m^2 calculate: (a) the air mass flow rate m_(0) (b) the fuel mass flow rate my for a fuel-to-air ratio of f/a=0.03 (c) the exhaust gas mass flow rate me. (d) the gross thrust. (e) the net thrust, (f) the thrust power, (g) the propulsive efficiency n_(p) (h) the thermal efficiency n_(th) (i) the specific fuel consumption q (i) the overall efficiency n_(0)

Soru

A ramjet engine operates at a flight Mach number M_(0)=0.8 at 9000 m altitude where p_(0)=30.14
kPa and T_(0)=229K For an effective exhaust velocity V_(e)=760m/s and inlet cross -sectional area
A_(1)=0.187m^2 calculate:
(a) the air mass flow rate m_(0)
(b) the fuel mass flow rate my for a fuel-to-air ratio of f/a=0.03
(c) the exhaust gas mass flow rate me.
(d) the gross thrust.
(e) the net thrust,
(f) the thrust power,
(g) the propulsive efficiency n_(p)
(h) the thermal efficiency n_(th)
(i) the specific fuel consumption q
(i) the overall efficiency n_(0)

A ramjet engine operates at a flight Mach number M_(0)=0.8 at 9000 m altitude where p_(0)=30.14 kPa and T_(0)=229K For an effective exhaust velocity V_(e)=760m/s and inlet cross -sectional area A_(1)=0.187m^2 calculate: (a) the air mass flow rate m_(0) (b) the fuel mass flow rate my for a fuel-to-air ratio of f/a=0.03 (c) the exhaust gas mass flow rate me. (d) the gross thrust. (e) the net thrust, (f) the thrust power, (g) the propulsive efficiency n_(p) (h) the thermal efficiency n_(th) (i) the specific fuel consumption q (i) the overall efficiency n_(0)

Çözüm

4.6239 Voting
avatar
Irfan
Profesyonel · 6 yıl öğretmeni
Uzman doğrulaması

Cevap

To solve this problem, we will use the given data and apply the principles of thermodynamics and fluid mechanics. Let's calculate each part step by step.<br /><br />---<br /><br />### **Given Data:**<br />- Flight Mach number \( M_0 = 0.8 \)<br />- Altitude: \( h = 9000 \, \text{m} \)<br />- Ambient pressure: \( p_0 = 30.14 \, \text{kPa} \)<br />- Ambient temperature: \( T_0 = 229 \, \text{K} \)<br />- Effective exhaust velocity: \( V_e = 760 \, \text{m/s} \)<br />- Inlet cross-sectional area: \( A_1 = 0.187 \, \text{m}^2 \)<br />- Fuel-to-air ratio: \( f/a = 0.03 \)<br /><br />**Constants:**<br />- Specific gas constant for air: \( R = 287 \, \text{J/kg·K} \)<br />- Ratio of specific heats for air: \( \gamma = 1.4 \)<br /><br />---<br /><br />### **(a) Air mass flow rate (\( m_0 \)):**<br /><br />The air mass flow rate is calculated using the continuity equation:<br />\[<br />m_0 = \rho_0 V_0 A_1<br />\]<br />where:<br />\[<br />\rho_0 = \frac{p_0}{R T_0}, \quad V_0 = M_0 a_0, \quad a_0 = \sqrt{\gamma R T_0}<br />\]<br /><br />#### Step 1: Calculate speed of sound (\( a_0 \)):<br />\[<br />a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 229} = \sqrt{91958.6} \approx 303.24 \, \text{m/s}<br />\]<br /><br />#### Step 2: Calculate flight velocity (\( V_0 \)):<br />\[<br />V_0 = M_0 a_0 = 0.8 \cdot 303.24 = 242.59 \, \text{m/s}<br />\]<br /><br />#### Step 3: Calculate air density (\( \rho_0 \)):<br />\[<br />\rho_0 = \frac{p_0}{R T_0} = \frac{30.14 \times 10^3}{287 \cdot 229} = \frac{30140}{65623} \approx 0.4594 \, \text{kg/m}^3<br />\]<br /><br />#### Step 4: Calculate air mass flow rate (\( m_0 \)):<br />\[<br />m_0 = \rho_0 V_0 A_1 = 0.4594 \cdot 242.59 \cdot 0.187 \approx 20.85 \, \text{kg/s}<br />\]<br /><br />So, the air mass flow rate is:<br />\[<br />\boxed{m_0 = 20.85 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(b) Fuel mass flow rate (\( m_f \)):**<br /><br />The fuel mass flow rate is related to the air mass flow rate by the fuel-to-air ratio:<br />\[<br />f/a = \frac{m_f}{m_0}<br />\]<br /><br />Rearranging for \( m_f \):<br />\[<br />m_f = (f/a) \cdot m_0 = 0.03 \cdot 20.85 \approx 0.6255 \, \text{kg/s}<br />\]<br /><br />So, the fuel mass flow rate is:<br />\[<br />\boxed{m_f = 0.6255 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(c) Exhaust gas mass flow rate (\( m_e \)):**<br /><br />The exhaust gas mass flow rate is the sum of the air mass flow rate and the fuel mass flow rate:<br />\[<br />m_e = m_0 + m_f = 20.85 + 0.6255 \approx 21.4755 \, \text{kg/s}<br />\]<br /><br />So, the exhaust gas mass flow rate is:<br />\[<br />\boxed{m_e = 21.48 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(d) Gross thrust (\( F_g \)):**<br /><br />Gross thrust is given by:<br />\[<br />F_g = m_e V_e<br />\]<br /><br />Substitute the values:<br />\[<br />F_g = 21.4755 \cdot 760 \approx 16320.38 \, \text{N}<br />\]<br /><br />So, the gross thrust is:<br />\[<br />\boxed{F_g = 16320.38 \, \text{N}}<br />\]<br /><br />---<br /><br />### **(e) Net thrust (\( F_n \)):**<br /><br />Net thrust accounts for the momentum of incoming air:<br />\[<br />F_n = F_g - m_0 V_0<br />\]<br /><br />Substitute the values:<br />\[<br />F_n = 16320.38 - (20.85 \cdot 242.59) \approx 16320.38 - 5057.91 \approx 11262.47 \, \text{N}<br />\]<br /><br />So, the net thrust is:<br />\[<br />\boxed{F_n = 11262.47 \, \text{N}}<br />\]<br /><br />---<br /><br />### **(f) Thrust power (\( P_t \)):**<br /><br />Thrust power is the product of net thrust and flight velocity:<br />\[<br />P_t = F_n V_0<br />\]<br /><br />Substitute the values:<br />\[<br />P_t = 11262.47 \cdot 242.59 \approx 2730000 \, \text{W} \, \text{or} \, 2730 \, \text{kW}<br />\]<br /><br />So, the thrust power is:<br />\[<br />\boxed{P_t = 2730 \, \text{kW}}<br />\]<br /><br />---<br /><br />### **(g) Propulsive efficiency (\( \eta_p \)):**<br /><br />Propulsive efficiency is given by:<br />\[<br />\eta_p = \frac{2 V_0}{V_0 + V_e}<br />\]<br /><br />Substitute the values:<br />\[<br />\eta_p = \frac{2 \cdot 242.59}{242.59 + 760} = \frac{485.18}{1002.59} \approx 0.484<br />\]<br /><br />So, the propulsive efficiency is:<br />\[<br />\boxed{\eta_p = 48.4\%}<br />\]<br /><br />---<br /><br />### **(h) Thermal efficiency (\( \eta_{th} \)):**<br /><br />Thermal efficiency is given by:<br />\[<br />\eta_{th} = \frac{F_n V_0}{m_f Q_r}<br />\]<br /><br />Here, \( Q_r \) is the heat released per unit mass of fuel. Since \( Q_r \) is not provided in the problem, we cannot calculate \( \eta_{th} \) without additional information.<br /><br />---<br /><br />### **(i) Specific fuel consumption (\( SFC \)):**<br /><br />Specific fuel consumption is given by:<br />\[<br />SFC = \frac{m_f}{F_n}<br />\]<br /><br />Substitute the values:<br />\[<br />SFC = \frac{0.6255}{11262.47} \approx 0.0000555 \, \text{kg/N·s} \, \text{or} \, 55.5 \, \text{mg/N·s}<br />\]<br /><br />So, the specific fuel consumption is:<br />\[<br />\boxed{SFC = 55.5 \, \text{mg/N·s}}<br />\]<br /><br />---<br /><br />### **(j) Overall efficiency (\( \eta_0 \)):**<br /><br />Overall efficiency is the product of propulsive efficiency and thermal efficiency:<br />\[<br />\eta_0 = \eta_p \cdot \eta_{th}<br />\]<br /><br />Since \( \eta_{th} \) is not calculated due to missing \( Q_r \), \( \eta_0 \) cannot be determined without additional information.<br /><br />--- <br /><br />This concludes the solution.
Derecelendirmek için tıklayın: