Soru
A ramjet engine operates at a flight Mach number M_(0)=0.8 at 9000 m altitude where p_(0)=30.14 kPa and T_(0)=229K For an effective exhaust velocity V_(e)=760m/s and inlet cross -sectional area A_(1)=0.187m^2 calculate: (a) the air mass flow rate m_(0) (b) the fuel mass flow rate my for a fuel-to-air ratio of f/a=0.03 (c) the exhaust gas mass flow rate me. (d) the gross thrust. (e) the net thrust, (f) the thrust power, (g) the propulsive efficiency n_(p) (h) the thermal efficiency n_(th) (i) the specific fuel consumption q (i) the overall efficiency n_(0)
Çözüm
4.6239 Voting
Irfan
Profesyonel · 6 yıl öğretmeniUzman doğrulaması
Cevap
To solve this problem, we will use the given data and apply the principles of thermodynamics and fluid mechanics. Let's calculate each part step by step.<br /><br />---<br /><br />### **Given Data:**<br />- Flight Mach number \( M_0 = 0.8 \)<br />- Altitude: \( h = 9000 \, \text{m} \)<br />- Ambient pressure: \( p_0 = 30.14 \, \text{kPa} \)<br />- Ambient temperature: \( T_0 = 229 \, \text{K} \)<br />- Effective exhaust velocity: \( V_e = 760 \, \text{m/s} \)<br />- Inlet cross-sectional area: \( A_1 = 0.187 \, \text{m}^2 \)<br />- Fuel-to-air ratio: \( f/a = 0.03 \)<br /><br />**Constants:**<br />- Specific gas constant for air: \( R = 287 \, \text{J/kg·K} \)<br />- Ratio of specific heats for air: \( \gamma = 1.4 \)<br /><br />---<br /><br />### **(a) Air mass flow rate (\( m_0 \)):**<br /><br />The air mass flow rate is calculated using the continuity equation:<br />\[<br />m_0 = \rho_0 V_0 A_1<br />\]<br />where:<br />\[<br />\rho_0 = \frac{p_0}{R T_0}, \quad V_0 = M_0 a_0, \quad a_0 = \sqrt{\gamma R T_0}<br />\]<br /><br />#### Step 1: Calculate speed of sound (\( a_0 \)):<br />\[<br />a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 229} = \sqrt{91958.6} \approx 303.24 \, \text{m/s}<br />\]<br /><br />#### Step 2: Calculate flight velocity (\( V_0 \)):<br />\[<br />V_0 = M_0 a_0 = 0.8 \cdot 303.24 = 242.59 \, \text{m/s}<br />\]<br /><br />#### Step 3: Calculate air density (\( \rho_0 \)):<br />\[<br />\rho_0 = \frac{p_0}{R T_0} = \frac{30.14 \times 10^3}{287 \cdot 229} = \frac{30140}{65623} \approx 0.4594 \, \text{kg/m}^3<br />\]<br /><br />#### Step 4: Calculate air mass flow rate (\( m_0 \)):<br />\[<br />m_0 = \rho_0 V_0 A_1 = 0.4594 \cdot 242.59 \cdot 0.187 \approx 20.85 \, \text{kg/s}<br />\]<br /><br />So, the air mass flow rate is:<br />\[<br />\boxed{m_0 = 20.85 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(b) Fuel mass flow rate (\( m_f \)):**<br /><br />The fuel mass flow rate is related to the air mass flow rate by the fuel-to-air ratio:<br />\[<br />f/a = \frac{m_f}{m_0}<br />\]<br /><br />Rearranging for \( m_f \):<br />\[<br />m_f = (f/a) \cdot m_0 = 0.03 \cdot 20.85 \approx 0.6255 \, \text{kg/s}<br />\]<br /><br />So, the fuel mass flow rate is:<br />\[<br />\boxed{m_f = 0.6255 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(c) Exhaust gas mass flow rate (\( m_e \)):**<br /><br />The exhaust gas mass flow rate is the sum of the air mass flow rate and the fuel mass flow rate:<br />\[<br />m_e = m_0 + m_f = 20.85 + 0.6255 \approx 21.4755 \, \text{kg/s}<br />\]<br /><br />So, the exhaust gas mass flow rate is:<br />\[<br />\boxed{m_e = 21.48 \, \text{kg/s}}<br />\]<br /><br />---<br /><br />### **(d) Gross thrust (\( F_g \)):**<br /><br />Gross thrust is given by:<br />\[<br />F_g = m_e V_e<br />\]<br /><br />Substitute the values:<br />\[<br />F_g = 21.4755 \cdot 760 \approx 16320.38 \, \text{N}<br />\]<br /><br />So, the gross thrust is:<br />\[<br />\boxed{F_g = 16320.38 \, \text{N}}<br />\]<br /><br />---<br /><br />### **(e) Net thrust (\( F_n \)):**<br /><br />Net thrust accounts for the momentum of incoming air:<br />\[<br />F_n = F_g - m_0 V_0<br />\]<br /><br />Substitute the values:<br />\[<br />F_n = 16320.38 - (20.85 \cdot 242.59) \approx 16320.38 - 5057.91 \approx 11262.47 \, \text{N}<br />\]<br /><br />So, the net thrust is:<br />\[<br />\boxed{F_n = 11262.47 \, \text{N}}<br />\]<br /><br />---<br /><br />### **(f) Thrust power (\( P_t \)):**<br /><br />Thrust power is the product of net thrust and flight velocity:<br />\[<br />P_t = F_n V_0<br />\]<br /><br />Substitute the values:<br />\[<br />P_t = 11262.47 \cdot 242.59 \approx 2730000 \, \text{W} \, \text{or} \, 2730 \, \text{kW}<br />\]<br /><br />So, the thrust power is:<br />\[<br />\boxed{P_t = 2730 \, \text{kW}}<br />\]<br /><br />---<br /><br />### **(g) Propulsive efficiency (\( \eta_p \)):**<br /><br />Propulsive efficiency is given by:<br />\[<br />\eta_p = \frac{2 V_0}{V_0 + V_e}<br />\]<br /><br />Substitute the values:<br />\[<br />\eta_p = \frac{2 \cdot 242.59}{242.59 + 760} = \frac{485.18}{1002.59} \approx 0.484<br />\]<br /><br />So, the propulsive efficiency is:<br />\[<br />\boxed{\eta_p = 48.4\%}<br />\]<br /><br />---<br /><br />### **(h) Thermal efficiency (\( \eta_{th} \)):**<br /><br />Thermal efficiency is given by:<br />\[<br />\eta_{th} = \frac{F_n V_0}{m_f Q_r}<br />\]<br /><br />Here, \( Q_r \) is the heat released per unit mass of fuel. Since \( Q_r \) is not provided in the problem, we cannot calculate \( \eta_{th} \) without additional information.<br /><br />---<br /><br />### **(i) Specific fuel consumption (\( SFC \)):**<br /><br />Specific fuel consumption is given by:<br />\[<br />SFC = \frac{m_f}{F_n}<br />\]<br /><br />Substitute the values:<br />\[<br />SFC = \frac{0.6255}{11262.47} \approx 0.0000555 \, \text{kg/N·s} \, \text{or} \, 55.5 \, \text{mg/N·s}<br />\]<br /><br />So, the specific fuel consumption is:<br />\[<br />\boxed{SFC = 55.5 \, \text{mg/N·s}}<br />\]<br /><br />---<br /><br />### **(j) Overall efficiency (\( \eta_0 \)):**<br /><br />Overall efficiency is the product of propulsive efficiency and thermal efficiency:<br />\[<br />\eta_0 = \eta_p \cdot \eta_{th}<br />\]<br /><br />Since \( \eta_{th} \) is not calculated due to missing \( Q_r \), \( \eta_0 \) cannot be determined without additional information.<br /><br />--- <br /><br />This concludes the solution.
Derecelendirmek için tıklayın: