Soru
4. A 905 kg car travels around a circular track with a circumference of 3.25 km. If the magnitude of the centripetal force is 2140 N, what is the car's tangential speed?
Çözüm
4.3164 Voting
Hüseyin
Elit · 8 yıl öğretmeniUzman doğrulaması
Cevap
To find the car's tangential speed, we can use the formula for centripetal force:<br /><br />\[ F_c = \frac{mv^2}{r} \]<br /><br />where:<br />- \( F_c \) is the centripetal force,<br />- \( m \) is the mass of the car,<br />- \( v \) is the tangential speed, and<br />- \( r \) is the radius of the circular track.<br /><br />Given:<br />- \( F_c = 2140 \) N,<br />- \( m = 905 \) kg, and<br />- \( r = \frac{3.25 \text{ km}}{2\pi} \) (since the circumference is \( 2\pi r \)).<br /><br />First, let's calculate the radius \( r \):<br /><br />\[ r = \frac{3250 \text{ m}}{2\pi} \approx 517.7 \text{ m} \]<br /><br />Now, we can rearrange the centripetal force formula to solve for the tangential speed \( v \):<br /><br />\[ v = \sqrt{\frac{F_c \cdot r}{m}} \]<br /><br />Plugging in the values:<br /><br />\[ v = \sqrt{\frac{2140 \text{ N} \cdot 517.7 \text{ m}}{905 \text{ kg}}} \]<br /><br />\[ v \approx \sqrt{\frac{111,148.8 \text{ Nm}}{905 \text{ kg}}} \]<br /><br />\[ v \approx \sqrt{122.9 \text{ m}^2/\text{s}^2} \]<br /><br />\[ v \approx 11.1 \text{ m/s} \]<br /><br />Therefore, the car's tangential speed is approximately 11.1 m/s.
Derecelendirmek için tıklayın: