Soru
The magnitudes of displacements overrightarrow (a) and overrightarrow (b) are 3 m and 4 m, respectively and overrightarrow (c)=overrightarrow (a)+overrightarrow (b) . Considering various orientations of overrightarrow (a) and overrightarrow (b) what are (a) the maximum possible magnitude for overrightarrow (c) and (b) the minimum possible magnitude?
Çözüm
3.8162 Voting
Vesile
Kıdemli · 11 yıl öğretmeniUzman doğrulaması
Cevap
To find the maximum and minimum possible magnitudes of the vector $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$, we need to consider the different orientations of $\overrightarrow{a}$ and $\overrightarrow{b}$.<br /><br />(a) Maximum possible magnitude:<br />The maximum possible magnitude of $\overrightarrow{c}$ occurs when the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are aligned in the same direction. In this case, the magnitudes of $\overrightarrow{a}$ and $\overrightarrow{b}$ can be added directly.<br /><br />Maximum magnitude of $\overrightarrow{c}$ = magnitude of $\overrightarrow{a}$ + magnitude of $\overrightarrow{b}$ = 3 m + 4 m = 7 m.<br /><br />(b) Minimum possible magnitude:<br />The minimum possible magnitude of $\overrightarrow{c}$ occurs when the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular to each other. In this case, the magnitudes of $\overrightarrow{a}$ and $\overrightarrow{b}$ can be subtracted using the Pythagorean theorem.<br /><br />Minimum magnitude of $\overrightarrow{c}$ = $\sqrt{(\text{magnitude of } \overrightarrow{a})^2 + (\text{magnitude of } \overrightarrow{b})^2}$ = $\sqrt{(3 \, \text{m})^2 + (4 \, \text{m})^2}$ = $\sqrt{9 \, \text{m}^2 + 16 \, \text{m}^2}$ = $\sqrt{25 \, \text{m}^2}$ = 5 m.<br /><br />Therefore, the maximum possible magnitude of $\overrightarrow{c}$ is 7 m, and the minimum possible magnitude is 5 m.
Derecelendirmek için tıklayın: