Soru
8. (LO4) Suppose the demand for a product is given by P=-0.8Q_(D)+150 and the supply for the same product is given by P=5.2Qs For both functions, D is the quantity and P is the price, in dollars Find the consumer surplus at the equilibrium price. a) 450 b) 250 c) 150 d) 550 e) 850
Çözüm
4.5169 Voting
Demet
Usta · 5 yıl öğretmeniUzman doğrulaması
Cevap
To find the consumer surplus at the equilibrium price, we need to follow these steps:<br /><br />1. **Find the equilibrium price and quantity:**<br /> - Set the demand equation equal to the supply equation to find the equilibrium quantity (\(Q_E\)):<br /> \[<br /> -0.8Q_D + 150 = 5.2Q_S<br /> \]<br /> Since \(Q_D = Q_S = Q_E\), we can rewrite it as:<br /> \[<br /> -0.8Q_E + 150 = 5.2Q_E<br /> \]<br /> Solving for \(Q_E\):<br /> \[<br /> 150 = 5.2Q_E + 0.8Q_E<br /> \]<br /> \[<br /> 150 = 6Q_E<br /> \]<br /> \[<br /> Q_E = \frac{150}{6} = 25<br /> \]<br /><br />2. **Find the equilibrium price (\(P_E\)) using the equilibrium quantity:**<br /> - Substitute \(Q_E = 25\) into either the demand or supply equation. Using the demand equation:<br /> \[<br /> P = -0.8Q_D + 150<br /> \]<br /> \[<br /> P = -0.8(25) + 150<br /> \]<br /> \[<br /> P = -20 + 150<br /> \]<br /> \[<br /> P = 130<br /> \]<br /><br />3. **Calculate the consumer surplus:**<br /> - Consumer surplus is the area of the triangle formed by the demand curve above the equilibrium price.<br /> - The formula for consumer surplus is:<br /> \[<br /> \text{Consumer Surplus} = \frac{1}{2} \times \text{Base} \times \text{Height}<br /> \]<br /> Here, the base is the equilibrium quantity (\(Q_E = 25\)) and the height is the difference between the maximum price consumers are willing to pay (intercept of the demand line) and the equilibrium price (\(P_E = 130\)):<br /> \[<br /> \text{Height} = 150 - 130 = 20<br /> \]<br /> Therefore,<br /> \[<br /> \text{Consumer Surplus} = \frac{1}{2} \times 25 \times 20 = \frac{1}{2} \times 500 = 250<br /> \]<br /><br />So, the consumer surplus at the equilibrium price is \(\$250\).<br /><br />The correct answer is:<br />b) \(\$250\)
Derecelendirmek için tıklayın: