Soru
11 Solve each of the followin 1^0x^4-3x^2+2=0
Çözüm
3.7268 Voting
Reyhan
Usta · 5 yıl öğretmeniUzman doğrulaması
Cevap
To solve the equation $x^4 - 3x^2 + 2 = 0$, we can use substitution to simplify it. Let $y = x^2$. Then the equation becomes $y^2 - 3y + 2 = 0$. This is a quadratic equation, and we can solve it by factoring: $(y - 1)(y - 2) = 0$. So, $y = 1$ or $y = 2$. Since $y = x^2$, we have $x^2 = 1$ or $x^2 = 2$. Taking the square root of both sides, we get $x = \pm 1$ or $x = \pm \sqrt{2}$. Therefore, the solutions to the equation are $x = 1, -1, \sqrt{2}, -\sqrt{2}$.
Derecelendirmek için tıklayın: