Soru
A supply equation and a demand equation for a product are given below.If p represents price per unit in dollars and q represents the number of units per unit of time, find the equilibrium point. Supply: 25q-2p+280=0 Demand: 70q+p-387.5=0 The equilibrium point (q,p) is square (Type an ordered pair.)
Çözüm
4.7307 Voting
Serap
Elit · 8 yıl öğretmeniUzman doğrulaması
Cevap
To find the equilibrium point, we need to solve the system of equations formed by the supply and demand equations.<br /><br />Given:<br />Supply: $25q - 2p + 280 = 0$<br />Demand: $70q + p - 387.5 = 0$<br /><br />Step 1: Solve the supply equation for $p$ in terms of $q$.<br />$25q - 2p + 280 = 0$<br />$-2p = -25q - 280$<br />$p = \frac{25q + 280}{2}$<br /><br />Step 2: Substitute the expression for $p$ into the demand equation.<br />$70q + p - 387.5 = 0$<br />$70q + \frac{25q + 280}{2} - 387.5 = 0$<br />$140q + 25q + 280 - 775 = 0$<br />$165q - 495 = 0$<br />$165q = 495$<br />$q = 3$<br /><br />Step 3: Substitute the value of $q$ into the expression for $p$.<br />$p = \frac{25(3) + 280}{2}$<br />$p = \frac{75 + 280}{2}$<br />$p = \frac{355}{2}$<br />$p = 177.5$<br /><br />Therefore, the equilibrium point $(q, p)$ is $(3, 177.5)$.
Derecelendirmek için tıklayın: