Fizik Ödev Yardımı
Fizik, tüm doğa bilimleri arasında çok önemli bir konudur, yaşamın harikalarını açıklamak için kullanılır ve aynı zamanda çalışılması en zor konulardan biridir.
QuestionAI, etkileşim halindeki kuvvetler altındaki moleküllerin eşlik eden yörüngeleri ile her bir atom ve onun özellikleri hakkında bilgi edinebileceğiniz, fiziğe yeni başlayanlar için zengin ve kolay bir fizik problemi çözücüdür. Elbette galaksiler arasında saklı sırları diğer fizik meraklılarıyla da keşfedebilirsiniz. Tahminlerinizi ve sorularınızı yapay zekaya cesurca yöneltin; kolayca güvenilir yanıtlar bulacaksınız.
- rigid body es defined in the study of mechanics? 11) Given vectors r and is state the type of results obtained for r. Fand r x 1?? (2 marks) iii) Given equation of force field as F=(2xy+z^3)i+x^3i+3xz^2 k determine whether it is conservative or not (6 marks) (2 marks)
- b) (i) Find the rotational equivalent of the Newton's second law of motion for linear motion which is given as F=(dp)/(dt) where Fis the force and p the linear momentum. (5 marks) (ii) From the relation obtained in (i), show that in the absence of any torque.on a bouy, is angular montentum is consctred (2 marks)
- 5. (a) Show that the rotational kinetic energy of a rigid body is given as T=(1)/(2)Iomega ^2 where the terms have their usual meanings. (5 marks)
- (b) A horizontal spring with force constant 500N/m is attached at one end with a mass of 5 kg which is kept on a horizontal frictionless table. The other end of the string is attached to a fixed support. If the mass is pulled 20 cm from its equilibrium position along the table and released, calculate the velocity the acceleration and the potential and kinetic energies of the mass when it has moved 5 cm towards the equilibrium position from its initial position (o marks)
- 4. (a) lua simple harmonic motion the magnitude of the force is given as F=-kx where is the force constant and is the displacement of the mass m (which is making the SHM) from its equilibrium position. (i) Find the differential equation for the above simple harmonic motion. (2 marks) (ii) Solve the above differential equation by taking its general solution as x=Acos(omega t+varphi ) and find the value of a in terms of k and m. (3 marks) (iii) What is the value of maximum displacement? (1 mark) (iv) Find the time period T for the SHM. (3 marks) (v) Find the potential and kinetic energies in the SHM and hence show that the total energy in a SHM is constant and is proportional to the square of the amplitude ot (5 marks)