Ana sayfa
/
Matematik
/
6. Let sum _(n=1)a_(n) and sum _(n=1)b_(n) be series of non-negative terms and suppose that a_(1)leqslant b_(1),a_(2)leqslant b_(2),a_(3)leqslant b_(3),ldots ,a_(n)leqslant b_(n),ldots sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)b_(n) diverges, what can be said about the convergence of sum _(n=1)a_(n) by the comparison test? ii sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)a_(n) what can be said about the convergence of sum _(n=1)b_(n) by the comparison test?

Soru

6. Let sum _(n=1)a_(n) and sum _(n=1)b_(n) be series of non-negative terms and suppose that a_(1)leqslant b_(1),a_(2)leqslant b_(2),a_(3)leqslant 
b_(3),ldots ,a_(n)leqslant b_(n),ldots 
sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)b_(n) diverges, what can be said about the convergence of sum _(n=1)a_(n) by
the comparison test?
ii sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)a_(n)	what can be said about the convergence of sum _(n=1)b_(n) by
the comparison test?

6. Let sum _(n=1)a_(n) and sum _(n=1)b_(n) be series of non-negative terms and suppose that a_(1)leqslant b_(1),a_(2)leqslant b_(2),a_(3)leqslant b_(3),ldots ,a_(n)leqslant b_(n),ldots sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)b_(n) diverges, what can be said about the convergence of sum _(n=1)a_(n) by the comparison test? ii sum _(n=1)a_(n)leqslant sum _(n=1)b_(n) and sum _(n=1)a_(n) what can be said about the convergence of sum _(n=1)b_(n) by the comparison test?

Çözüm

4.5277 Voting
avatar
Aytunç
Profesyonel · 6 yıl öğretmeni
Uzman doğrulaması

Cevap

i) Since $\sum_{n=1}a_{n}$ is a series of non-negative terms and $\sum_{n=1}b_{n}$ diverges, we can conclude that $\sum_{n=1}a_{n}$ also diverges by the comparison test.<br /><br />ii) Since $\sum_{n=1}a_{n}$ converges and $\sum_{n=1}a_{n}\leqslant \sum_{n=1}b_{n}$, we can conclude that $\sum_{n=1}b_{n}$ also converges by the comparison test.
Derecelendirmek için tıklayın: