Soru
(3)/(5)(2x+3)=x+3 ns góre, x kactir?
Çözüm
4.0134 Voting
Gülizar
Profesyonel · 6 yıl öğretmeniUzman doğrulaması
Cevap
To solve the equation $\frac{3}{5}(2x+3)=x+3$, we can start by distributing the $\frac{3}{5}$ on the left side of the equation:<br /><br />$\frac{3}{5}(2x+3) = \frac{3}{5} \cdot 2x + \frac{3}{5} \cdot 3 = \frac{6x}{5} + \frac{9}{5}$<br /><br />So the equation becomes:<br /><br />$\frac{6x}{5} + \frac{9}{5} = x + 3$<br /><br />To eliminate the fractions, we can multiply both sides of the equation by 5:<br /><br />$5 \cdot \left(\frac{6x}{5} + \frac{9}{5}\right) = 5 \cdot (x + 3)$<br /><br />This simplifies to:<br /><br />$6x + 9 = 5x + 15$<br /><br />Next, we can subtract $5x$ from both sides to isolate the $x$ terms:<br /><br />$6x + 9 - 5x = 5x + 15 - 5x$<br /><br />This simplifies to:<br /><br />$x + 9 = 15$<br /><br />Finally, we can subtract 9 from both sides to solve for $x$:<br /><br />$x + 9 - 9 = 15 - 9$<br /><br />$x = 6$<br /><br />Therefore, the solution to the equation is $x = 6$.
Derecelendirmek için tıklayın: